Halvade: scalable sequence analysis with MapReduce

نویسندگان

  • Dries Decap
  • Joke Reumers
  • Charlotte Herzeel
  • Pascal Costanza
  • Jan Fostier
چکیده

MOTIVATION Post-sequencing DNA analysis typically consists of read mapping followed by variant calling. Especially for whole genome sequencing, this computational step is very time-consuming, even when using multithreading on a multi-core machine. RESULTS We present Halvade, a framework that enables sequencing pipelines to be executed in parallel on a multi-node and/or multi-core compute infrastructure in a highly efficient manner. As an example, a DNA sequencing analysis pipeline for variant calling has been implemented according to the GATK Best Practices recommendations, supporting both whole genome and whole exome sequencing. Using a 15-node computer cluster with 360 CPU cores in total, Halvade processes the NA12878 dataset (human, 100 bp paired-end reads, 50× coverage) in <3 h with very high parallel efficiency. Even on a single, multi-core machine, Halvade attains a significant speedup compared with running the individual tools with multithreading.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Halvade-RNA: Parallel variant calling from transcriptomic data using MapReduce

Given the current cost-effectiveness of next-generation sequencing, the amount of DNA-seq and RNA-seq data generated is ever increasing. One of the primary objectives of NGS experiments is calling genetic variants. While highly accurate, most variant calling pipelines are not optimized to run efficiently on large data sets. However, as variant calling in genomic data has become common practice,...

متن کامل

Performance Analysis of a Parallel, Multi-node Pipeline for DNA Sequencing

Post-sequencing DNA analysis typically consists of read mapping followed by variant calling and is very time-consuming, even on a multi-core machine. Recently, we proposed Halvade, a parallel, multi-node implementation of a DNA sequencing pipeline according to the GATK Best Practices recommendations. The MapReduce programming model is used to distribute the workload among different workers. In ...

متن کامل

ThemisMR: An I/O-Efficient MapReduce

“Big Data” computing increasingly utilizes the MapReduce programming model for scalable processing of large data collections. Many MapReduce jobs are I/O-bound, and so minimizing the number of I/O operations is critical to improving their performance. In this work, we present ThemisMR, a MapReduce implementation that reads and writes data records to disk exactly twice, which is the minimum amou...

متن کامل

Methods for Frequent Sequence Mining with Subsequence Constraints

In this thesis, we study scalable and general purpose methods for mining frequent sequences that satisfy a given subsequence constraint. Frequent sequence mining is a fundamental task in data mining and has many real-life applications like information extraction, market-basket analysis, web usage mining, or session analysis. Depending on the underlying application, we are generally interested i...

متن کامل

Scalable parallel computing on clouds using Twister4Azure iterative MapReduce

Recent advances in data intensive computing for science discovery are fueling a dramatic growth in the use of dataintensive iterative computations. The utility computing model introduced by cloud computing, combined with the rich set of cloud infrastructure and storage services, offers a very attractive environment in which scientists can perform data analytics. The challenges to large-scale di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2015